Cobalt Odin™ Series

Compact & tunable Mid-IR OPOs

3264 nm
3431 nm
CONTENTS

1. Introduction .. 5
2. Safety .. 6
 2.1. General ... 6
 2.2. Safety features .. 7
 2.3. Equipment Safety 7
 2.4. Warning and Identification Labels 8
3. Overview ... 9
 3.1. Model number .. 9
 3.2. Configuration .. 9
 3.3. Laser Head .. 10
 3.4. Controller ... 10
 3.5. Controller Cable 11
 3.6. Thermal Management 11
 3.7. Power Supply Requirements 11
4. System Description ... 12
 4.1. Specification .. 12
 4.2. Mechanical Drawings 14
 4.3. Remote Interlock Connector 16
 4.4. Direct ON/OFF control 16
 4.5. Pin assignment 17
5. Operating Instructions .. 18
 5.1. Installation start-up operation 18
 5.2. Shutdown procedure operation 18
6. Operating modes ... 19
7. Wavelength tuning .. 20
8. Operation via data port 21
 8.1. Handshaking .. 21
 8.2. RS232 configured controllers 21
 8.3. USB configured controllers 21
 8.4. Communication commands 24
9. Cobolt Monitor™ Software 26
 9.1. Installation .. 26
 9.2. Software instructions 26
10. Troubleshooting ... 29
11. Warranty and Maintenance 29
12. Service .. 29
13. Compliance (CDRH models only) 30
14. Disclaimer .. 31
1. Introduction

The Cobolt Odin™ Series is an ultra-compact and industrial-grade mid-IR source based on a fully contained temperature tunable Optical Parametric Oscillator (OPO) with integrated pump laser. Periodically poled nonlinear optical crystals are used for efficient and spectrally flexible generation of mid-IR emission. The lasers are manufactured using Cobolt’s proprietary HTCure™ technology and packaged in a compact and sealed laser head, offering a size, robustness and reliability never before achieved for this kind of laser source.

The Cobolt Odin™ Series lasers provide up to 80 mW average output power at a centre wavelength freely selectable over the range of 2.5 µm through tailoring of the nonlinear crystal. The lasers can be tuned in wavelength over tens of nanometers via temperature adjustments. The emission is generated in nanosecond pulses (< 5 ns) at high pulse repetition rate (10 kHz) and very low pulse-to-pulse jitter.

The combination of compact format, high level of robustness, spectral flexibility and low power consumption makes the Cobolt Odin™ Series lasers ideal light sources for a large variety of industrial and scientific applications related to molecular spectroscopy. In particular they are suitable for integration into analytical instrumentation for fast, accurate and sensitive gas detection used in environmental monitoring applications as well as for control and limitation of pollution emissions in petrochemical, automotive and energy production industries.
2. Safety

2.1. General

Cobolt Odin™ series are Class IIIB (CDRH), Class 3B (IEC) laser products that emit less than 500 mW of radiation in the Mid-IR spectrum. Residual emissions from the pump diode, the pump laser and the OPO cavity are contained within the laser head housing via filtering optics. The residual emission does not exceed laser Class 1.

Eye and skin exposure to direct or reflected laser light is hazardous and may be extremely harmful. Always wear eye protection appropriate to the beam wavelength and intensity. Laser radiation may pose a risk of igniting flammable materials and in event of ignition gasses and fumes may be generated. All equipment used in close proximity to the laser beam should be suitably fire resistant and the facility should be properly ventilated. It is advised to perform a risk assessment for the facility and equipment prior to using the laser. In the case of integration into a larger system, laser safety compliance must be evaluated on the end product.

The device must be handled by skilled personnel experienced with lasers, in a laboratory environment and with access to adequate laser safety equipment. The laser head clearly displays a yellow warning label that shows the location of the laser beam aperture. This label must be visible unless the laser beam is totally enclosed.

The table below describes the nominal lasers operation parameters.

<table>
<thead>
<tr>
<th>Product</th>
<th>Average Power (mW)</th>
<th>Pulse Duration (ns)</th>
<th>Pulse Repetition Rate (kHz)</th>
<th>Pulse Energy (µJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobolt Odin™ 3.0-3.6 µm</td>
<td>> 80</td>
<td>< 5</td>
<td>> 7 / > 10</td>
<td>> 11 / > 8</td>
</tr>
</tbody>
</table>

The table below describes the maximum energy density in J/cm² used for safety calculations and the appropriate level of eye protection in terms of optical density (OD) for each product line.

<table>
<thead>
<tr>
<th>Product</th>
<th>Laser Class</th>
<th>Warning Label Power (mW)</th>
<th>Max Pulse (µJ)</th>
<th>Max Energy Density (J/m²)</th>
<th>Eye Protection Requirement***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobolt Odin™ 3.0-3.6 µm</td>
<td>IIIB</td>
<td>150</td>
<td>21</td>
<td>27</td>
<td>> OD 2 / I,R L1</td>
</tr>
</tbody>
</table>

* Max Pulse (µJ) = Warning Label Power (W) / Repetition Rate at bottom tolerance (Hz)
** Max Energy Density (J/cm²) = Warning Label Pulse (J) / Beam Area at bottom tolerance (cm²)
*** Eye protection (OD) = \(\log_{10} \left(\frac{60825 \times \text{Emission Limit: Class 1 (µJ)}}{\text{Max Pulse (µJ)}} \right) \), rounded up to the next integer/See EN 207

CAUTION

Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.
2.2. Safety features

The laser is equipped with all required safety features as described in the laser safety standard 60825-1. Disabling any safety features negate the CE/CDRH compliance of this product.

Remote Interlock Connector

The remote interlock connector is a connector which permits the connection of external controls placed apart from other components of the laser product. When the terminals of the connector are open-circuited, emission is interrupted and no radiation will be accessible. The remote interlock connector permits easy addition of an external interlock in laser installation. See section 4.3 for a detailed description of the remote interlock circuit and operation.

Manual Shutter (Beam Stop)

The laser head is equipped with a manual shutter, which functions as the beam stop, capable of preventing human access to laser radiation. The aperture location and the open and close positions of the shutter are indicated on the top surface of the laser head.

Key Control

The CDRH compliant model comes with a key-switch on the Controller which must be connected for the laser to operate. When the key is in the OFF position, the laser is prevented from emitting. The key must be actively turned to the ON position each time the laser is powered on. When the key is removed from the system laser radiation is not accessible.

Laser Radiation Emission Warning

The Controller incorporates information LEDs which display whether power is connected, the laser is on, or a fault has occurred. The “ON” LED is illuminated whenever the device is emitting or could emit light. See section 3.4 for details on the controller. The emission warning indicators are also visible in the Cobolt Monitor™ software, see section 9 for details on the control software.

2.3. Equipment Safety

Always install all power supplies used in the laser system to properly grounded power outlets. The laser head and controller must be mounted on a common ground plane, such as an optical table. Cobolt lasers contain a laser diode which is sensitive to electrostatic discharge (ESD).
2.4 Warning and Identification Labels

The upper face of the laser head contains a yellow label with laser safety warning and classification information, the wavelength and maximum power of the unit. It also shows the location of the laser beam from the aperture and indicates the open and close positions of the manual shutter. This label must be visible unless the laser beam is totally enclosed. A silver label showing information about the laser model, manufacturer date and location, and the power supply voltage and current, is located on the laser head. Lasers shipped to customers in the USA also contain a label of CDRH compliance.

Manufacturer Identification Labels

CE marking for CDRH models only

OEM Label

Aperture Warning Labels

Laser Notice No. 50 Label

CDRH models shipped to USA
3. Overview

Cobolt Odin Series laser systems consist of four main parts: the laser head, the Controller, the Cable and the Power Supply (not shown). The cable provided should always be used to connect the laser head with the Controller. Always install the laser system to a properly grounded power outlet.

3.1. Model number

Cobolt lasers are sold in two configurations: CDRH and OEM, described in section 3.2. The model numbers are composed as described below.

<table>
<thead>
<tr>
<th>Configuration, communication:</th>
<th>Power</th>
<th>Laser Head Model</th>
<th>Wavelength Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 = CE / CDRH compliant, RS-232</td>
<td>Laser Head Model</td>
<td>Wavelength Indicator</td>
<td>Power</td>
</tr>
<tr>
<td>600 = OEM, RS-232</td>
<td>Laser Head Model</td>
<td>Wavelength Indicator</td>
<td>Power</td>
</tr>
<tr>
<td>700 = CE / CDRH compliant, USB</td>
<td>Laser Head Model</td>
<td>Wavelength Indicator</td>
<td>Power</td>
</tr>
<tr>
<td>800 = OEM, USB</td>
<td>Laser Head Model</td>
<td>Wavelength Indicator</td>
<td>Power</td>
</tr>
<tr>
<td>xxx = OEM customization</td>
<td>Laser Head Model</td>
<td>Wavelength Indicator</td>
<td>Power</td>
</tr>
</tbody>
</table>

3.2. Configuration

3.2.1. CDRH Compliant

The CDRH compliant system is supplied with a key switch on the Controller, which must be connected, along with a remote interlock connector. Once power is supplied, laser radiation starts when the key is turned from the OFF position to the ON position. The status of operation can be monitored via LEDs on the Controller. Setting the key to its OFF position puts the laser in stand-by mode. The CDRH model is CE compliant.

The standard CDRH model consists of:
- Laser head
- Controller with key switch
- Keys
- 1(m) Controller Cable
- 15V/4.2A power supply unit

3.2.2. OEM

The OEM system is supplied without a key switch on the controller. Connecting the power supply to the controller initiates an automatic start-up sequence. If the remote interlock is connected, laser radiation will start automatically as soon as power is supplied and internal temperatures are stabilized.
The OEM model consists of:
- Laser head
- Controller
- Controller Cable
- 15V/4.2A power supply unit

3.3. Laser Head

The Laser Head contains a passively Q-switched diode-pumped solid state nanosecond pulsed laser cavity, an integrated Optical Parametric Oscillator (OPO), beam shaping optics and thermoelectric coolers (TEC). The Laser Head also contains an optical feed-back loop which measures the average power of the output radiation and a pulse monitoring feed-back loop that measured the repetition rate of the pump laser. The beam shaping optics to provide a collimated, circular beam.

The Laser Head gets electrical power and control signals from the Controller via a 26-pin cable. The Laser Head has a manual shutter, a manufacturer’s identification label and a laser hazard and classification label. In addition, the Laser Head features an SMA connector for direct monitoring of pulse parameters and delivering a trigger-out signal from the measured pump OPO pulse.

3.4. Controller

The Controller supplies driving current and control signals to the laser head. All Laser Heads are delivered with a controller. The operation set points are specific to each Laser Head and have been fixed during manufacturing. The operation set points are stored in the laser head so the controller can be interchanged or replaced.

The status of the laser operation is given via LED indicators:

- **POW** (green light) Power is supplied.
- **ON** (orange light) Laser light is on in constant current mode.
- **LOCK** (orange light) Laser light is on and the output power has been locked to set point. The laser is operating according to specifications.
- **ERR** (red light) An error has occurred. No laser light.

When power is supplied to the Controller, regardless of on/off state, the temperature control elements are operating to reach set point values. The Controller includes a remote interlock connector, pin 1-2 according to Section 4.3. The operation of the laser can be controlled and monitored via the data port that supports either USB or RS-232 commands. See Section 8.4 for further details. RS-232 controllers may also be delivered with a RS-232 to USB adaptor.
3.5. Controller Cable

The controller cable connects the laser head to the Controller. The standard (CE compliant) cable length is 1 m long. The cable has a minimum bending radius 8 cm. When connected care should be taken not to bend or break any of the 26 pins.

3.6. Thermal Management

To ensure operation within given specifications and for the warranty to be valid, the Laser Head must be attached to a heat sink providing a thermal resistance of <0.2 K/W. This value is the difference between the maximum allowed Laser Head base plate temperature (50°C) and the maximum specified ambient temperature at the air-heatsink interface (40°C), divided by the maximum power dissipated from the laser (~50 W for the highest power models at high ambient temperatures). The mounting surface should be flat (within ±0.05 mm over mounting surface). It is recommended to use a thermal heat compound between the Laser Head and the heat sink to provide good thermal contact. The Cobolt ‘HS-04 Laser Head Heatsink with fans’ meets these requirements, see www.cobolt.se for more information on heat sinks.

For assistance in thermal management and system integration, please contact Cobolt’s technical support.

3.7. Power Supply Requirements

An appropriate Power Supply Unit (PSU) is supplied by Cobolt with the laser and must be plugged into a properly grounded standard power outlet. The output from this PSU is 15 VDC/4.2 A. The power supply accepts 100 – 240 V AC and 50-60 Hz. Ripple and noise 1% peak-peak max, 20 MHz bandwidth. The accepted voltage range is 11 V - 28 VDC; full performance is only guaranteed at 15 VDC/4.2 A.
4. System Description

The information presented here is believed to be accurate and is subject to change without notice. The specifications contained herein cannot be guaranteed outside of normal operational conditions. Specifications are guaranteed at 100% of nominal power.

4.1. Specification

4.1.1. Optical Specifications

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Cobolt Odin™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center wavelength</td>
<td>3264 ± 4 nm</td>
</tr>
<tr>
<td></td>
<td>3431 ± 4 nm</td>
</tr>
<tr>
<td>Spectral Bandwidth</td>
<td>< 1.5 nm</td>
</tr>
<tr>
<td>Wavelength tuning range</td>
<td>± 25 nm</td>
</tr>
<tr>
<td>Wavelength resolution</td>
<td>< 0.007 nm</td>
</tr>
<tr>
<td>Average output power</td>
<td>> 80 mW</td>
</tr>
<tr>
<td>Long term power stability (8hrs, ±3°C)</td>
<td>< 3 %</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>> 10 kHz</td>
</tr>
<tr>
<td></td>
<td>> 7 kHz</td>
</tr>
<tr>
<td>Pulse energy</td>
<td>> 7 µJ</td>
</tr>
<tr>
<td></td>
<td>> 10 µJ</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>3.5 ns</td>
</tr>
<tr>
<td>Pulse-to-pulse Jitter</td>
<td>< 1 µs</td>
</tr>
<tr>
<td>Beam divergence (full angle, 1/e²)</td>
<td>< 8 mrad</td>
</tr>
<tr>
<td>Beam diameter at aperture (1/e²)</td>
<td>1.7 ± 0.5 mm</td>
</tr>
<tr>
<td>Polarization extinction ratio</td>
<td>> 100:1, vertical</td>
</tr>
<tr>
<td>Beam symmetry at aperture</td>
<td>> 0.90 : 1</td>
</tr>
<tr>
<td>Long-term repetition rate stability (8 hours, ±3°C)</td>
<td>< 3 %</td>
</tr>
<tr>
<td>Beam position accuracy</td>
<td>< 0.5 mm</td>
</tr>
<tr>
<td>Beam angle accuracy</td>
<td>< 5 mrad</td>
</tr>
</tbody>
</table>

All specifications given above are valid at nominal output.
1. The wavelength is specified in air. Other center wavelengths from 2-5µm available upon request.
2. Average power stability measured at a fixed wavelength. Power may vary during tuning.
3. The repetition rate can be chosen at time of purchase in combination with any available wavelength.
4.1.2. Operation and Environmental Specifications – Laser Head

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>15 VDC, 4.2 A. (11-28 VDC accepted)</td>
</tr>
<tr>
<td>System power consumption (Laser Head + Controller)</td>
<td>< 63 W (typical ~30 W)</td>
</tr>
<tr>
<td>Maximum heat dissipation of Laser Head</td>
<td>< 50 W (typical ~20 W)</td>
</tr>
<tr>
<td>Maximum Laser Head baseplate temperature</td>
<td>50°C</td>
</tr>
<tr>
<td>Warm-up time, from OFF</td>
<td>< 5 min</td>
</tr>
<tr>
<td>Ambient temperature, operation</td>
<td>10 – 40 °C</td>
</tr>
<tr>
<td>Ambient temperature, storage</td>
<td>-10°C to +60 °C</td>
</tr>
<tr>
<td>Humidity</td>
<td>0-60 % RH non-condensing</td>
</tr>
<tr>
<td>Ambient Air pressure</td>
<td>950–1050 mbar</td>
</tr>
<tr>
<td>Heat sink thermal resistance, Laser Head</td>
<td>< 0.2 K/W</td>
</tr>
</tbody>
</table>

4.1.3. Electrical Interfaces - Controller

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>Connector</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input power</td>
<td>Kycon KPJX-45, 4-pin</td>
<td>Power supply to Controller</td>
</tr>
<tr>
<td>Laser Head to Controller</td>
<td>HD-sub 26-pin, male</td>
<td>Connection to Laser Head</td>
</tr>
<tr>
<td>Controller to Laser Head</td>
<td>HD-sub 26-pin, female</td>
<td>Connection to Controller</td>
</tr>
<tr>
<td>Data port</td>
<td>USB-type mini B</td>
<td>Control and monitoring via control commands</td>
</tr>
<tr>
<td>Remote interlock & Analog signals</td>
<td>Molex 90130-3206</td>
<td>Analog input 5 – 12 V => Laser ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analog input <2.7 V => Laser OFF</td>
</tr>
</tbody>
</table>

4.1.4. Mechanical Interfaces

<table>
<thead>
<tr>
<th>Dimensions:</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Head</td>
<td>125x70x45 mm (4.9x2.8x1.8 inches)</td>
</tr>
<tr>
<td>Controller</td>
<td>190x72x28 mm (7.5x2.8x1.1 inches)</td>
</tr>
<tr>
<td>PSU dimensions</td>
<td>115x50x35 mm (4.6x2x1.4 inches)</td>
</tr>
<tr>
<td>Fixation holes, Laser Head</td>
<td>ø = 4x 4.5mm ; 115mm x 55mm</td>
</tr>
<tr>
<td>Fixation holes, Controller</td>
<td>ø = 4x 6.4mm ; 178mm x 51mm</td>
</tr>
<tr>
<td>Cable (Laser Head – Controller)</td>
<td>1 m length, >8 cm bending radius</td>
</tr>
<tr>
<td>Laser Head weight</td>
<td>0.6 kg</td>
</tr>
</tbody>
</table>
4.2. Mechanical Drawings

4.2.1. Laser Head

Laser head mechanical outline. Dimensions in mm [inches].

Connector location Laser Head

Controller Cable

Trigger Output
4.2.2. Controller

Controller mechanical outline. Dimensions in mm [inches].

Connector location Controller

Analog & remote interlock connector

Data connector

Power connector
4.3. Remote Interlock Connector

The remote interlock connector is located at pin 1 and 2 of the Molex connector on the Controller. The connector can be short-circuited with an interlock jumper (included at delivery) for operation of the laser. To use the remote interlock connector with an external switch, connect a pin 1 and 2 on a Molex plug. After the remote interlock connector has been opened the laser will need to be reset by disconnecting from and then reconnecting to the power supply in order to start again. Alternatively, it can be re-started using a special sequence of commands, see Section 8.4 for further details. The signal level is between 0V and +5V with a pull up resistor, and the current required to ground the remote interlock connector is 5 mA. The time delay in the hardware is <1ms, but after filtering by the firmware the reaction time is extended to < 20ms.

4.4. Direct ON/OFF control

The Direct On/Off Control feature enables turning the laser ON/OFF using a 5-12 VDC signal. After having configured the Controller for Direct Control operation (factory set or by executing @cobasdr 1), the laser can only start-up when 5-12V VDC (max 12.5 VDC) is applied to pin 3 on the analog connector with 0 VDC on pin 2 as reference. Shifting the signal to 0 VDC on pin 3 will turn the laser off and put the laser in stand-by mode (status LED:s is POW and not flashing).

This function is not available for CDRH compliant models.

! Note: This input only controls the on/off state of the laser and cannot be used to modulate the power output.
4.5. Pin assignment

4.5.1. Analog connector & Remote interlock connector

Manufacturer Molex 90130-3206, mates with 90143-0006.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remote Interlock (connect to pin 2 for enable)</td>
</tr>
<tr>
<td>2</td>
<td>0 V - GND</td>
</tr>
<tr>
<td>3</td>
<td>Remote On/Off (+5V Input)</td>
</tr>
<tr>
<td>4</td>
<td>TST (Internal Cobolt use only)</td>
</tr>
<tr>
<td>5</td>
<td>LED “Laser on” (5V)</td>
</tr>
<tr>
<td>6</td>
<td>LED “Error” (5V)</td>
</tr>
</tbody>
</table>

4.5.2. Power connector

Kycon KPJX-4S, mates with Kycon KPPX-4P. Grounded shield.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 V</td>
</tr>
<tr>
<td>2</td>
<td>+11-28 VDC</td>
</tr>
<tr>
<td>3</td>
<td>0 V</td>
</tr>
<tr>
<td>4</td>
<td>+11-28 VDC</td>
</tr>
</tbody>
</table>

4.5.3. Data connector

Connector USB-type, manufacturer Hsuan Mao C8320-05BFDSBo, mates with connector mini-B.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5 V</td>
</tr>
<tr>
<td>2</td>
<td>D-</td>
</tr>
<tr>
<td>3</td>
<td>D+</td>
</tr>
<tr>
<td>4</td>
<td>Not connected</td>
</tr>
<tr>
<td>5</td>
<td>0 V (GND)</td>
</tr>
</tbody>
</table>
5. Operating Instructions

As standard, all lasers are delivered with the Controller set in Auto-start mode. As soon as power is supplied to the Controller the temperature control elements are operating to reach set-point values and the laser emission will start, unless the key-switch is enabled (CDRH model).

5.1. Installation start-up operation

1. Mount the laser head on a suitable heat sink (see Section 3.5).
2. Ensure that the remote interlock jumper is connected.
3. Connect the laser head to the Controller with the Cable and fasten screws at both ends.
4. Connect the 15 VDC power supply to the mains outlet and then to the Controller.
5. The laser now goes through the following auto-start sequence:
 - Temperature stabilization (1-2 min). Status LEDs: POW flashing, then POW goes on.
 - Turn key switch to start the laser. Status LEDs: ON goes on (CDRH model only)
 - The laser starts (light is emitted) in a constant warm-up current constant for 60 sec.
 Status LEDs: ON goes on.
 - The laser locks to pre-set output power (<2 min) and operates according to specifications.
 Status LEDs: LOCK goes on.

! Note: If the power does not match the power as stated on the test sheet see Section 12: Service for more information.

5.2. Shutdown procedure operation

1. Turn the key switch to OFF first (CDRH models only).
2. Disconnect PSU from mains outlet.
3. Disconnect Controller from PSU.
6. Operating modes

Cobolt Odin™ series lasers are delivered in constant power mode. CDRH/CE compliant models may be used in constant power, constant current and burst mode only.

6.1.1. Constant current

The pump laser diode delivers a constant current. The constant repetition rate loop is inactive when this mode is selected. The actual repetition rate will still be displayed in the GUI.

6.1.2. Constant Power

The average power is monitored internally and a feed-back loop assures that a constant average output power is delivered by making small adjustments to the laser diode current. Note that the constant power monitor is wavelength dependent. The displayed power measurement is only valid at the center wavelength. It is recommended to use the constant power mode only when additional power stability is desired and operating the OPO at a constant wavelength. Tuning the wavelength while in constant power mode, will result in a change in output power due to this wavelength dependence.

6.1.3. Burst mode

In burst mode, the laser diode current is modulated which allows in bursts of pulses to be emitted repeatedly. The “On-Time” sets the time (in ms) where the laser diode current is set to “I-High”, and the “Off-time” sets the time (in ms) where the laser diode current is set to “I-Low”.

The burst mode can be used in numerous ways, but a typical use would be to set the “I-Low” just below the laser threshold and the “I-High” at a laser diode current giving desired output power. The result would be an on/off modulation of the laser set by the On/Off-times where a burst of pulses is emitted during the On-time. The pulse repetition rate is dependent on the laser diode current and consequently the number of pulses emitted in the On-state is dependent on both the “On-time” and “I-High”.

As an example, if the pulse repetition rate at the set “I-High” is 7 kHz and the On-time is 7ms, there will be a burst of approximately 49 pulses during the On-time.

6.1.4. Constant repetition rate (OEM only)

The pulse repetition rate is monitored internally and a feed-back loop assures that a constant repetition rate is delivered by making small adjustments of laser diode current. Using the lasers in constant repetition rate mode is not compliant with the EMC/EMI 61326 standard for immunity to radiated electromagnetic fields according to IEC 61000-4-3 and thereby negates the CE compliance.
7. Wavelength tuning

Cobolt Odin™ features a filtering technique which significantly narrows the bandwidth of the emitted light resulting in the spectral bandwidth specified above. Additionally, the wavelength of the emitted light can be tuned with high repeatability and stability.

Tuning is done in the GUI by selecting “more” and then setting the desired wavelength. Equivalently, the ‘swl’ command can be used.

The wavelength tuning is continuous within three to four overlapping wavelength ranges of about 22nm each, together covering the total tuning range stated in the specification. The wavelength is controlled by adjusting the temperature settings of the TECs inside the laser head.

The TEC temperatures displayed in the GUI will turn from red to green when the target temperatures have been reached and the OPO has reached its target wavelength. It will take several additional seconds before the temperature has stabilized to within the ±0.01°C required for the specified stability performance. The specified bandwidth and wavelength stability are applicable only after the temperatures have stabilized.

Tuning time is proportional to the wavelength step taken, with additional time when going from one wavelength range to another. During the tuning time, the wavelength, the shape of the spectrum and the bandwidth may not be as stated in the specification. A tuning step spanning the entire tuning range typically takes less than a minute. For applications in which the shape of the spectrum and the bandwidth should be maintained during tuning it is recommended to tune the wavelength incrementally in small steps rather than setting the final wavelength directly.

Each unit is calibrated at the operating conditions stated in the test protocol prior to shipment. Operating the device under other conditions may affect the absolute calibration, but the repeatability and stability is maintained. The wavelength calibration is affected by a change in the OPOs operating current. Consequently changing the repetition rate, average power or operating the device in burst mode will affect the absolute wavelength calibration. As a rule of thumb, the wavelength shift is ~ 1pm/mA.

Note that the set wavelength refers to the wavelength in dry air at 1 atm and 288°C where the refractive index in the mid-IR range is 1.000273.
8. Operation via data port

8.1. Handshaking
Under no circumstances does the Controller initiate communication; it only transmits characters in response to a message. Every message to the Controller generates a response, either a numerical value or the acknowledgment string “OK”. In the event that the Controller receives a message that it cannot interpret, it responds: “Syntax error:” followed by the complete command string (minus the termination character) that caused the error. Every Controller response is terminated by a carriage return (ASCII 13) and a full stop is used with floating numbers.

8.2. RS232 configured controllers
To communicate with the laser, a communication cable is supplied. Each Controller is shipped from the factory with a fixed baud rate (115200). The other serial port parameters are: 8 data bits, 1 stop bit and no parity. Hardware flow control is not supported. Each command to the Controller must be terminated by a carriage return. All commands are case-sensitive. Leading and trailing white space is ignored, but command arguments must be delimited by a single space character (ASCII 32).

8.3. USB configured controllers
The USB configured controllers requires a driver for communication with a computer. The USB driver must be installed and can be downloaded from the Cobolt website (www.cobolt.se). When installed, a virtual COM port will be created to communicate with the Controller.
To install the USB driver in Windows 7 follow these instructions:

1. Go to the Control Panel and choose Hardware and Sound.
2. Under the **Devices and Printers** section, choose **Device Manager**.

3. Under **Other devices**, find the device called **Cobolt Laser Driver MLD/DPL**. Right-click it and choose **Update Driver Software**.

4. On the next screen chose the **Browse my computer for driver software** option.
5. Click **browse**, and find folder on your computer where the USB driver is stored.

![Device Manager](image1)

6. Windows security may warn you that the publisher of the driver is unverified. Choose **Install this driver software anyway**.

![Windows Security](image2)

7. The installation should now be complete.
8.4. Communication commands

The laser is delivered with the Controller set in Auto-start mode (see section 5.1 for Auto-start sequence description). For system integration the Auto-start sequence can be disabled and the following commands can be used to control the laser (NOTE some commands require Auto-start to be disabled but others will work when Auto-start is active). As long as power is supplied to the Controller the temperature control elements are always operating to reach set-point values and the laser will be idle waiting for the next command. All arguments are in lower case and separated by a space (ASCII 32).

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Argument</th>
<th>Returned value</th>
</tr>
</thead>
<tbody>
<tr>
<td>hrs?</td>
<td>Get laser head operating hours</td>
<td></td>
<td>Float</td>
</tr>
<tr>
<td>ilk?</td>
<td>Get interlock state</td>
<td></td>
<td>0 = OK, 1 = interlock open</td>
</tr>
<tr>
<td>@cobas</td>
<td>Enable/disable autostart (OEM models)</td>
<td>0 = disable, 1 = enable</td>
<td></td>
</tr>
<tr>
<td>@cobas?</td>
<td>Get autostart enable state</td>
<td>0 = disabled, 1 = enabled</td>
<td></td>
</tr>
<tr>
<td>l?</td>
<td>Get laser ON/OFF state</td>
<td></td>
<td>0 = OFF, 1 = ON</td>
</tr>
<tr>
<td>l1</td>
<td>Laser ON (Requires autostart disabled. Use this command for manual ON (OEM models))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l0</td>
<td>Laser OFF (Use this command for manual OFF (OEM models))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p?</td>
<td>Get set output power</td>
<td></td>
<td>Float (W)</td>
</tr>
<tr>
<td>p</td>
<td>Set output power</td>
<td>Float (W) (e.g. p 0.050 for 50 mW)</td>
<td></td>
</tr>
<tr>
<td>pa?</td>
<td>Read output power</td>
<td></td>
<td>Float (W)</td>
</tr>
<tr>
<td>i?</td>
<td>Get drive current</td>
<td></td>
<td>Float (A)</td>
</tr>
<tr>
<td>slc</td>
<td>Set drive current</td>
<td></td>
<td>Float (A)</td>
</tr>
</tbody>
</table>
| leds? | Status of 4 LEDs | Int [0:15] | Bit 0 = "POWER ON"
| | | Bit 1 = "LASER ON"
| | | Bit 2 = "LASER LOCK"
| | | Bit 3 = "ERROR"
| | | 1 = LED on
| | | 0 = LED off |
| f? | Get operating fault | | 0 = no fault
| | | 1 = temperature error
| | | 3 = open interlock
<p>| | | 4 = constant power fault |
| cf | Clear fault | | |
| @cobasdr | Enable/disable direct control | 0 = disable, 1 = enable |
| | See sect 4.4 for description | |
| @cobasdr? | Get direct control enable state | 0 = disabled, 1 = enabled |
| sn? | Get serial number | | 32-bit unsigned integer |
| @cob1 | Laser ON after interlock (Forces the laser into Autostart without checking if autostart is enabled (OEM models).) | |</p>
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>swl</code></td>
<td>Set wavelength</td>
<td>Float (nm) (e.g. <code>swl 3435.142</code>)</td>
</tr>
<tr>
<td><code>gwl?</code></td>
<td>Get wavelength</td>
<td>Float (nm)</td>
</tr>
<tr>
<td><code>rlf?</code></td>
<td>Read laser rep-rate</td>
<td>Float (kHz)</td>
</tr>
<tr>
<td><code>glf?</code></td>
<td>Get laser rep-rate</td>
<td>Float (kHz)</td>
</tr>
<tr>
<td><code>slf</code></td>
<td>Set laser rep-rate</td>
<td>Float (kHz)</td>
</tr>
<tr>
<td><code>ebm</code></td>
<td>Enable burst mode</td>
<td></td>
</tr>
<tr>
<td><code>ecc</code></td>
<td>Enable constant current mode</td>
<td></td>
</tr>
<tr>
<td><code>ecr</code></td>
<td>Enable constant repetition rate mode</td>
<td></td>
</tr>
<tr>
<td><code>ecp</code></td>
<td>Enable constant power mode</td>
<td></td>
</tr>
<tr>
<td><code>sihigh</code></td>
<td>Set high-level (on-level) current used in burst mode</td>
<td>Float (A)</td>
</tr>
<tr>
<td><code>silow</code></td>
<td>Set low-level (off-level) current used in burst mode</td>
<td>Float (A)</td>
</tr>
<tr>
<td><code>stlon</code></td>
<td>Set on-time used in burst mode</td>
<td>Integer (ms)</td>
</tr>
<tr>
<td><code>stloff</code></td>
<td>Set off-time used in burst mode</td>
<td>Integer (ms)</td>
</tr>
</tbody>
</table>

For re-starting the laser with commands after having opened the remote interlock switch, execute “cf” for clear fault followed by “@cob1” to restart the laser. This command forces the laser into Auto-start enabled so Auto-start must be disabled if this is the required set up. On CDRH models the key switch is the only way to re-start.
9. Cobolt Monitor™ Software

The Cobolt Monitor™ software provides a graphical way to monitor the laser performance and to change power, operation mode and other settings. The software can connect to the laser either via RS-232 port or via USB, depending on the type of controller. The USB driver must be installed manually and can be downloaded from the Cobolt website (www.cobolt.se), see section 8.3. Cobolt Monitor™ has been tested with operative systems Windows XP, Windows Vista, Windows 7 and Windows 8. Microsoft .NET 2.0 is required to run the Cobolt Monitor™ software. Most computers with operative systems Windows XP, Windows Vista, Windows 7 and Windows 8 have this included as standard.

9.1. Installation

Download the latest version of the Cobolt Monitor™ software from www.cobolt.se. The Cobolt Monitor™ software is a stand-alone executable, the executable file is packaged with other files needed to run the program in a .zip file. Save the .zip file any storage device, and extract all files. The folder created after extracting the files can be placed on any storage device and Cobolt Monitor™ can be run from there. All files and folders contained in the .zip file must be present for the program to function properly.

9.2. Software instructions

The software automatically searches for Cobolt devices every 5 seconds and automatically connects the laser if detected. The software can identify USB connected lasers as well as RS232 connected lasers.

Once the laser is connected it can be controlled from the box dedicated for the laser. The interface, found in the following figure, is intended for typical user cases. Only the relevant information is presented on this level, displaying only the status the laser is in and relevant choices to make. Here follows a short description of how to use the Cobolt Monitor™ software on this level.
Laser ON – Turns the laser ON. If the laser is in autostart mode this is equivalent to “restart”.

Laser OFF – Turns the laser OFF.

Mode – Gives a choice of operational modes possible to choose for the laser model. Cobolt Odin™ Series Constant Power, Constant Current, Burst Mode and Constant Repetition Rate (OEM only) operation can be chosen. Only relevant choices are presented to the mode of operation chosen.

Commands – opens a command communications window to send commands directly to the laser controller.

Message – highlights important information of the laser status to the user.

Disconnect – allows the user to disconnect from the Cobolt Monitor™ software in a controlled way.

! Note: The communication cable should not be removed when the software is in connect state. The communication within the controller may then malfunction and this might require a power restart of the driver. To disconnect the laser click “Disconnect” or close Cobolt Monitor™ completely. It is also possible to disconnect by powering the laser OFF. In this case Cobolt Monitor™ will automatically close the window for that laser.

Clear Fault - is displayed in the event of a fault. The user can deal with the cause of the fault and then press “Clear Fault” and then restart the laser by clicking “Laser ON”. Example: if the remote interlock loop is open the user must make sure the loop is closed again before issuing a “Clear Fault” followed by “Laser On”.

More – an additional Cobolt Monitor™ window will open containing more detailed information of that laser’s status.
Cobolt Monitor™ software expanded to for more detailed monitoring.

TEC Settings – shows the running status and the fault status for the laser’s internal thermoelectric coolers (TEC).

Laser Operation Mode and Settings - displays the set laser power. The user can switch between operation modes. Likewise, there are boxes to set the power, current, burst mode, repetition rate levels. See section 6 for more information on operation modes.

Autostart Program - displays whether the laser is in CDRH or OEM mode and displays the current laser operational status. 5V direct input is set here, see section 4.4. There are also buttons to “abort” the autostart sequence or to “restart” the laser after a fault.

Note Specifications are only guaranteed in constant power mode, at 100% of nominal power.

Fault Status – displays ERROR messages. In the event of an ERROR, the laser action is stopped. When the reason for the ERROR event is understood and the problem is addressed the fault status can be cleared with “Clear Fault”. If the Autostart Program is enabled, click restart to restart the laser.

LED Status - displays the LEDs that are currently illuminated on the Controller, see section 3.4. These are displayed even if the laser is in OEM mode.
10. Troubleshooting

In the unlikely case of a problem occurring, use the table below to help identify the error. Some faults can be fixed remotely. Back reflections into the laser cavity can cause instability. In case of a sudden voltage drop the laser will turn itself off and restart. If it is in CDRH configuration it will require that the key is turned on again.
Contact Cobolt support or your local representative to identify corrective action.

<table>
<thead>
<tr>
<th>LEDs</th>
<th>Status</th>
<th>Explanation</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>POW</td>
<td>off</td>
<td>Mains power off</td>
<td>Check connections</td>
</tr>
<tr>
<td>POW</td>
<td>x</td>
<td>Temperatures not stabilized</td>
<td>Check if heatsink is sufficient</td>
</tr>
<tr>
<td>LOCK</td>
<td>x</td>
<td>Laser cannot lock in constant power, current limit has been reached</td>
<td>Check for back reflections. Contact the factory.</td>
</tr>
<tr>
<td>ERROR</td>
<td>on</td>
<td>Error in laser parameters</td>
<td>If lights at start-up check cable connections, if lights >5s after start-up contact the factory.</td>
</tr>
</tbody>
</table>

11. Warranty and Maintenance

Cobolt provides a warranty of 12 months with unlimited number of operation hours. The laser systems are designed for modular repair or replacement in the event that the laser head or Controller malfunctions. Warranty is invalid if the laser system is operated outside of the specific limits and conditions as outlined in this document.
The Cobolt lasers are contained in sealed enclosures and should not be opened for any reason. Disassembly of any part of the system (including the cable) means the system no longer complies with the EMC standards will void the warranty. All laser parameters are set at the factory, and there are no adjustments required. Maintenance is limited to wiping dirt off the enclosures and cleaning the aperture.

12. Service

Due to accuracy tolerances, calibration differences and allowed power drift there may be discrepancies between the Cobolt measurement of the optical output power and the customer measurement equipment. If the output power deviates from the reported value please contact your local Cobolt representative for an online re-calibration. If the laser does not function, do not attempt to open any of the units, or the warranty will be voided.
Contact your local Cobolt representative for consultancy and to request an RMA number (see back cover for contact information). If an RMA number us issued and the laser needs to be shipped back to Cobolt or your local representative, please pack the complete system for shipment using the original package or equivalent. Ensure the unit is free from thermal paste before packing. The warranty covers repair or replacing the unit at the option of Cobolt.
13. Compliance (CDRH models only)

The CDRH model lasers (-5/700) are designed and manufactured to comply with the EC Low Voltage Directive and the EC EMC Directive in the CDRH-compliant configuration of laser head, controller, key, 1m controller cable and Cobolt-supplied power supplies. All equipment must be mounted on a common ground plane, such as an optical table. The equipment might not conform to the EC directives if any part of the supplied equipment is replaced with a part not supplied by Cobolt or if the equipment is not properly grounded. Disabling any of the safety features nullifies the CE compliance and the laser safety standard.

The following harmonized standards are in use:

- **Electrical Safety:** EN 61010-1, IEC-61010-1, UL 61010-1
- **Laser Safety/Class:** IEC-60825-1, CDRH 21 CFR 1040.10 and 1040.11
- **EMC:** IEC 61326-1
 - EN55011 class A
 - EN61000-4-X, where X=2,3,4,5,6 and 11
 - FCC Part 15, subpart B, class A

All Cobolt products are RoHS compliant as defined by the EU Directive 2011/65/EU.

Contact your sales representative for a copy of the full Declaration of Conformity.
14. Disclaimer

Cobolt will assume no responsibility for damage incurred by faulty customer equipment, such as measurement equipment, cables etc, used in conjunction with Cobolt lasers. Cobolt makes no warranty of any kind with regard to the information contained in this guide, included but not limited to, implied warranties of merchantability and suitability for a particular purpose. Cobolt shall not be liable for errors contained herein nor for incidental or consequential damages from the furnishing of this information. No part in this manual may be copied, reproduced, recorded, transmitted, or translated without the express written permission by Cobolt.
Headquarters
Cobolt AB
Vretenvägen 13
SE-171 54 Solna
Sweden
Phone: +46 8 545 912 30
Fax: +46 8 545 912 31
info@cobolt.se
www.cobolt.se

Australia
Warsash Scientific Pty Ltd
www.warsash.com.au

Benelux
Laser 2000 Benelux CV
www.laser2000.nl

Brazil
Photonics Instrumentos
www.photonics.com.br

China
DynaSense Photonics Co. Ltd.
www.dyna-sense.com

Estonia, Latvia and Lithuania
Optek Ltd
www.optek.lv

France
Optoprim
www.optoprim.com

Germany, Austria and Switzerland
Von Gegerfelt Photonics
www.vongegerfelt photonics.com

India
Spectral Instrument System
www.spectralinstruments.com

Israel
LaHat Technologies Ltd
www.lahat.co.il

Italy
Optoprim SRL
www.optoprim.it

Japan
Kantum Electronics Co Ltd
www.kantum.co.jp
Pneum Co, Ltd Japan
www.pneum.co.jp

Poland
Amecam
www.amecam.pl

Russia and Belarus
Azimuth Photonics
www.azimp.ru

South Korea
SM Tech
www.lasersystem.co.kr

Singapore, Malaysia and Thailand
PhotoniTech (Asia) Pte Ltd
www.photonitech.com

Spain and Portugal
Laser Technology SI
www.lasertechology.com

Taiwan
Tayhwta Technology Co Ltd
www.tayhwa.com.tw

UK and Ireland
Laser Lines Ltd
www.laserlines.co.uk

USA
Cobolt Inc
www.coboltinc.com